112 research outputs found

    Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes.

    Get PDF
    ObjectivesHippocampal dysfunction has been proposed as a mechanism for memory deficits in schizophrenia. Available evidence suggests that the anterior and posterior hippocampus could be differentially affected. Accordingly, we used fMRI to test the hypothesis that activity in posterior hippocampus is disproportionately reduced in schizophrenia, particularly during spatial memory retrieval.Methods26 healthy participants and 24 patients with schizophrenia from the UC Davis Early Psychosis Program were studied while fMRI was acquired on a 3 Tesla Siemens scanner. During encoding, participants were oriented to critical items through questions about item features (e.g., "Does the lamp have a square shade?") or spatial location (e.g., "Is the lamp on the table next to the couch?"). At test, participants determined whether scenes were changed or unchanged. fMRI analyses contrasted activation in a priori regions of interest (ROI) in anterior and posterior hippocampus during correct recognition of item changes and spatial changes.ResultsAs predicted, patients with schizophrenia exhibited reduced activation in the posterior hippocampus during detection of spatial changes but not during detection of item changes. Unexpectedly, patients exhibited increased activation of anterior hippocampus during detection of item changes. Whole brain analyses revealed reduced fronto-parietal and striatal activation in patients for spatial but not for item change trials.ConclusionsResults suggest a gradient of hippocampal dysfunction in which posterior hippocampus - which is necessary for processing fine-grained spatial relationships - is underactive, and anterior hippocampus - which may process context more globally - is overactive

    Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct

    Get PDF
    A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns

    Effects of gestational age at birth on cognitive performance : a function of cognitive workload demands

    Get PDF
    Objective: Cognitive deficits have been inconsistently described for late or moderately preterm children but are consistently found in very preterm children. This study investigates the association between cognitive workload demands of tasks and cognitive performance in relation to gestational age at birth. Methods: Data were collected as part of a prospective geographically defined whole-population study of neonatal at-risk children in Southern Bavaria. At 8;5 years, n = 1326 children (gestation range: 23–41 weeks) were assessed with the K-ABC and a Mathematics Test. Results: Cognitive scores of preterm children decreased as cognitive workload demands of tasks increased. The relationship between gestation and task workload was curvilinear and more pronounced the higher the cognitive workload: GA2 (quadratic term) on low cognitive workload: R2 = .02, p<0.001; moderate cognitive workload: R2 = .09, p<0.001; and high cognitive workload tasks: R2 = .14, p<0.001. Specifically, disproportionally lower scores were found for very (<32 weeks gestation) and moderately (32–33 weeks gestation) preterm children the higher the cognitive workload of the tasks. Early biological factors such as gestation and neonatal complications explained more of the variance in high (12.5%) compared with moderate (8.1%) and low cognitive workload tasks (1.7%). Conclusions: The cognitive workload model may help to explain variations of findings on the relationship of gestational age with cognitive performance in the literature. The findings have implications for routine cognitive follow-up, educational intervention, and basic research into neuro-plasticity and brain reorganization after preterm birth

    Exploring Predictors of Outcome in the Psychosis Prodrome: Implications for Early Identification and Intervention

    Get PDF
    Functional disability is a key component of many psychiatric illnesses, particularly schizophrenia. Impairments in social and role functioning are linked to cognitive deficits, a core feature of psychosis. Retrospective analyses demonstrate that substantial functional decline precedes the onset of psychosis. Recent investigations reveal that individuals at clinical-high-risk (CHR) for psychosis show impairments in social relationships, work/school functioning and daily living skills. CHR youth also demonstrate a pattern of impairment across a range of cognitive domains, including social cognition, which is qualitatively similar to that of individuals with schizophrenia. While many studies have sought to elucidate predictors of clinical deterioration, specifically the development of schizophrenia, in such CHR samples, few have investigated factors relevant to psychosocial outcome. This review integrates recent findings regarding cognitive and social-cognitive predictors of outcome in CHR individuals, and proposes potential directions for future research that will contribute to targeted interventions and improved outcome for at-risk youth

    Motor Agency: A New and Highly Sensitive Measure to Reveal Agency Disturbances in Early Psychosis

    Get PDF
    Background: Early diagnosis of young adults at risk of schizophrenia is essential for preventive approaches of the illness. Nevertheless, classic screening instruments are difficult to use because of the non-specific nature of the signs at this preonset phase of illness. The objective of the present contribution was to propose an innovating test that can probe the more specific symptom of psychosis, i.e., the sense of agency, which is defined as being the immediate experience of oneself as the cause of an action. More specifically, we tested whether motor agency is abnormal in early psychosis. Methods: Thirty-two young symptomatic patients and their age-matched controls participated in the study. 15 of these patients were at ultra high-risk for developing psychosis (UHR), and 17 patients were suffering from first-episode psychosis (FEP). Patients ’ neurocognitive capacities were assessed through the use of seven neuropsychological tests. A motor agency task was also introduced to obtain an objective indicator of the degree of sense of agency, by contrasting force levels applied during other and self-produced collisions between a hand-held objet and a pendulum. Results: As reported in the literature for adult controls, healthy adolescents used more efficient force levels in self than in other-imposed collisions. For both UHR and FEP patients, abnormally high levels of grip force were used for self-produced collisions, leading to an absence of difference between self and other. The normalized results revealed that motor agency differentiated patients from controls with a higher level of sensitivity than the more classic neuropsychological test battery

    Developing adaptive control:Age-related differences in task choices and awareness of proactive and reactive control demands

    Get PDF
    Developmental changes in executive function are often explained in terms of core cognitive processes and associated neural substrates. For example, younger children tend to engage control reactively in the moment as needed, whereas older children increasingly engage control proactively, in anticipation of needing it. Such developments may reflect increasing capacities for active maintenance dependent upon dorsolateral prefrontal cortex. However, younger children will engage proactive control when reactive control is made more difficult, suggesting that developmental changes may also reflect decisions about whether to engage control, and how. We tested awareness of temporal control demands and associated task choices in 5-year-olds and 10-year-olds and adults using a demand selection task. Participants chose between one task that enabled proactive control and another task that enabled reactive control. Adults reported awareness of these different control demands and preferentially played the proactive task option. Ten-year-olds reported awareness of control demands but selected task options at chance. Five-year-olds showed neither awareness nor task preference, but a subsample who exhibited awareness of control demands preferentially played the reactive task option, mirroring their typical control mode. Thus, developmental improvements in executive function may in part reflect better awareness of cognitive demands and adaptive behavior, which may in turn reflect changes in dorsal anterior cingulate in signaling task demands to lateral prefrontal cortex

    Confidence and psychosis: a neuro-computational account of contingency learning disruption by NMDA blockade.

    Get PDF
    A state of pathological uncertainty about environmental regularities might represent a key step in the pathway to psychotic illness. Early psychosis can be investigated in healthy volunteers under ketamine, an NMDA receptor antagonist. Here, we explored the effects of ketamine on contingency learning using a placebo-controlled, double-blind, crossover design. During functional magnetic resonance imaging, participants performed an instrumental learning task, in which cue-outcome contingencies were probabilistic and reversed between blocks. Bayesian model comparison indicated that in such an unstable environment, reinforcement learning parameters are downregulated depending on confidence level, an adaptive mechanism that was specifically disrupted by ketamine administration. Drug effects were underpinned by altered neural activity in a fronto-parietal network, which reflected the confidence-based shift to exploitation of learned contingencies. Our findings suggest that an early characteristic of psychosis lies in a persistent doubt that undermines the stabilization of behavioral policy resulting in a failure to exploit regularities in the environment.FV was supported by the Groupe Pasteur Mutualité. RG was supported by the Fondation pour la Recherche Médicale and the Fondation Bettencourt Schueller. SP is supported by a Marie Curie Intra-European fellowship (FP7-PEOPLE-2012-IEF). AF was supported by National Health and Medical Research Council grants (IDs : 1050504 and 1066779) and an Australian Research Council Future Fellowship (ID: FT130100589). This work was supported by the Wellcome Trust and the Bernard Wolfe Health Neuroscience Fund.This is the final version of the article. It first appeared from the Nature Publishing Group via http://dx.doi.org/10.1038/mp.2015.7
    corecore